wjec cbac

GCE A LEVEL MARKING SCHEME

SUMMER 2019

A LEVEL (NEW) MATHEMATICS UNIT 3 PURE MATHEMATICS B 1300U30-1 PMT

INTRODUCTION

This marking scheme was used by WJEC for the 2019 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

GCE MATHEMATICS

A2 UNIT 3 PURE MATHEMATICS B

SUMMER 2019 MARK SCHEME

Q Solution

Mark Notes

1(a)
$$\frac{9}{(x-1)(x+2)^2} = \frac{A}{(x-1)} + \frac{B}{(x+2)} + \frac{C}{(x+2)^2} M1$$

$$9 = A(x+2)^2 + B(x-1)(x+2) + C(x-1) \qquad \text{m1} \qquad \text{correct method to remove denominator}$$

Put $x = 1, A = 1$
m1 $\qquad \text{correct method for finding}$
 $A, B \text{ or } C$
Coef. $x^2, 0 = A + B, B = -1$
Put $x = -2, C = -3$
A1 all 3 values correct, cao

1(b)
$$\int \frac{9}{(x-1)(x+2)^2} dx$$

= $\int \frac{1}{(x-1)} dx - \int \frac{1}{(x+2)} dx - \int \frac{3}{(x+2)^2} dx$ M
= $\ln|x-1| - \ln|x+2| + \frac{3}{(x+2)} + Const$ A

- 11 attempt to integrate PF
- A1 one correct term, ft (a)
- A1 all correct, -1 if no *Const.* ft(a), isw

<u>Note</u>: ft incorrect constants or $\frac{A}{(x-1)} + \frac{Bx+C}{(x+2)^2}$.

Q Solution

2
$$(4-x)(1+2x)^{\frac{1}{2}}$$

= $(4-x)\left[1+\left(-\frac{1}{2}\right)(2x)+\frac{\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)}{2}(2x)^{2}+\frac{\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)\left(-\frac{5}{2}\right)}{3\times 2}(2x)^{3}\right]$
B2 -1 each error term $(4-x)$ not required.

$$= (4 - x)[1 - x + \frac{3}{2}x^{2} - \frac{5}{2}x^{3} + \dots]$$

$$= (4 - 4x + 6x^{2} - 10x^{3}) - (x - x^{2} + \frac{3}{2}x^{3}) + \dots M1$$

$$= 4 - 5x + 7x^{2} - \frac{23}{2}x^{3} + \dots M1$$
A2

terms all correct

correct method

-1 each incorrect term.

Ignore further terms., isw

Expansion is valid for
$$|x| < \frac{1}{2}$$
.

B1 oe, mark final answer

Note
$$(1+2x)^{\frac{1}{2}} = 1 + (\frac{1}{2})(2x) + \frac{(\frac{1}{2})(-\frac{1}{2})}{2}(2x)^2 + \frac{(\frac{1}{2})(-\frac{1}{2})(-\frac{3}{2})}{3\times 2}(2x)^3 + \dots$$

= $1 + x - \frac{1}{2}x^2 + \frac{1}{2}x^3 + \dots$ (B0)
 $(4-x)(1+2x)^{\frac{1}{2}} = 4 + 3x - 3x^2 + \frac{5}{2}x^3 + \dots$ (M1) correct method

(A2) terms all correct

-1 each incorrect term.

Ignore further terms.

Expansion is valid for
$$|x| < \frac{1}{2}$$
. (B1)

Q	Solution		Mark	Notes
3(a)	$x_2 = 29$ $x_1 = 8$		B1 B1	ft 1 slip
3(b)	Not an AP becaus	se 113 - 29 \neq 29 - 8	B1	either GP or A
		$x_3 - x_2 \neq x_2 - x_1.$	DI	

Not a GP because $\frac{113}{29} \neq \frac{29}{8}$ $\frac{x_3}{x_2} \neq \frac{x_2}{x_1}$.

B1 either GP or AP statement, reason required, ft (a)

B1 for the other statement,

Reason required, ft (a)

Note : Accept equivalent statement if clear.

Q Solution

Mark Notes

M1

4(a) $5\sin x - 12\cos x = R\sin x \cos \alpha - R\cos x \sin \alpha$

 $R\cos\alpha = 5$ $R\sin\alpha = 12$

$$R = \sqrt{5^2 + 12^2} = 13$$
 B1

$$\alpha = \tan^{-1}\left(\frac{12}{5}\right) = 67.380^{\circ}$$
 A1 accept 1.176 rad not 1.176.

4(b)
$$y = \frac{4}{13\sin(x - 67 \cdot 380) + 15}$$

Min *y* when denominator is max,

ie when sin(x - 67.380) = 1

Min
$$y = \frac{4}{28} (= \frac{1}{7} = 0.1429)$$

x - 67.380 = -13.342, 193.342

4(c) $\sin(x - 67.380) = -\frac{3}{13}$

$$x = 260.72^{\circ}$$

M1 implied by correct min A1 ft *R*

A1 either value
A1 0.943 rad
A1 4.550 rad
Ignore answers outside the range.
-1 for any extra answers within range
Accept answers rounding correctly
to 54, 261.

<u>Note</u>: full follow through their *R* and α provided of equivalent difficulty, eg not $\alpha = 0$, *R*=1.

PMT

5(a) either
$$1 - 3x > 7$$
, or $1 - 3x < -7$

either
$$x < -2$$
, or $x > \frac{8}{3}$

Mark Notes

M1 one correct inequa	lity
-----------------------	------

A1 both correct

A1 cao oe, mark final answer

oe

OR

$$(1-3x)^{2} > 7^{2}$$
(M1)

$$9x^{2}-6x-48 > 0$$
(A1)

$$3x^{2}-2x-16 > 0$$

$$(3x-8)(x+2) > 0$$

either x < -2, or x > $\frac{8}{3}$ (A1) cao

5(b)

- G1 Shape, min below x-axis
- G1 (-2, 0), (8/3, 0), ft (a)
- B2 (1/3, -7) and drawn in correct quadrant.

B1 for either coordinate.

si

si

si

B1

B1

B1

$$6(a) \qquad \frac{\mathrm{d}x}{\mathrm{d}\theta} = \cos\theta$$

$$\frac{\mathrm{d}y}{\mathrm{d}\theta} = -2\sin 2\theta$$

When
$$\theta = \frac{\pi}{4}$$
, $x = \frac{1}{\sqrt{2}}$, $y = 0$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{2\sin\frac{\pi}{2}}{\cos\frac{\pi}{4}} = -2\sqrt{2}$$

A1 $m = -2\sqrt{2}$, oe

ft dy/d θ =2sin2 θ or -sin2 θ

Eqⁿ of tgt is
$$y - 0 = -2\sqrt{2} (x - \frac{1}{\sqrt{2}})$$

Eqⁿ of tgt is $y = -2\sqrt{2} x + 2$

A1 c = 2 cao

OR
$$y = \cos 2\theta = 1 - 2 \sin^2 \theta$$
 (M1)
 $y = 1 - 2x^2$ (A1)
 $\frac{dy}{dx} = -4x$ (B1) ft $2 \sin^2 \theta - 1$
When $\theta = \frac{\pi}{4}, x = \frac{1}{\sqrt{2}}, y = 0$ (B1) si
 $\frac{dy}{dx} = -4 \times \frac{1}{\sqrt{2}} = -2\sqrt{2}$ (B1) ft $2 \sin^2 \theta - 1$

Eqⁿ of tgt is $y - 0 = -2\sqrt{2} (x - \frac{1}{\sqrt{2}})$

Eqⁿ of tgt is
$$y = -2\sqrt{2}x + 2$$
 (A1) $c = 2$, cao

PMT

Q Solution

6(b)	x + y = 1	
	$\cos 2\theta + \sin \theta - 1 = 0$	M1
	$1 - 2\sin^2\theta + \sin\theta - 1 = 0$	M 1
	$2\sin^2\theta - \sin\theta = 0$	
	$\sin\theta(2\sin\theta-1)=0$	m1
	$x = \sin\theta = 0, \ \frac{1}{2}$	A1
	$y = 1 - x = 1, \ \frac{1}{2}$	A1
	required coordinates are (0, 1), $\left(\frac{1}{2}, \frac{1}{2}\right)$	

M1	$\cos 2\theta = 1 - 2 \sin^2 \theta$	
m1	si, ft for correct fact	orisation
A1	one correct pair	cao
A1	all correct	cao

OR

$$y = \cos 2\theta = 1 - 2 \sin^2 \theta$$
(M1) $\cos 2\theta = 1 - 2 \sin^2 \theta$
(m1) $x = \sin \theta$
(m1)

$$y = 1 - x$$
Solving simultaneously
(m1)

$$x(2x - 1) = 0$$
(A1) one correct pair

$$y = 0, y = \frac{1}{2}$$
(A1) all correct

required coordinates are (0, 1), $\left(\frac{1}{2}, \frac{1}{2}\right)$

ct pair

(A1) all correct

Q Solution

7(a)

G1	shape of graph
B1	(5,0)
B1	(-3, 8)

- G1 shape, intersecting *y*-axis at a positive value of *y*.
- B1 (4, 3)
 - (0, 1) not required.

8(a)	$T_3 = 3 + 2d$
	$T_{19} = 3 + 18d$
	$T_{67} = 3 + 66d$
	$\frac{3+66d}{3+18d} = \frac{3+18d}{3+2d} \ (=r)$
	(3+66d)(3+2d) = (3+18d)(3+18d)
	$9 + 204d + 132d^2 = 9 + 108d + 324d^2$
	$192d^2 = 96d$
	$d = \frac{1}{2}$

B1	T3, T19 or T67	correct
	-,	

B1 all correct

M1 method for d or r

m1 method for d

A1 cao, condone presence of d = 0

$$8(b)(i)$$
 AP $a = 100, d = 12$ M1 si8 weeks = 40 working days.Total no. employees = $100 + 39 \times 12$ Total no. employees = 568 A1

8(b)(ii) Wage bill =

55[100 + 112 + 124 +...(40 terms)] M1 55 not required,

implied by 13360

Wage bill =
$$55\left[\frac{40}{2}(2 \times 100 + 39 \times 12)\right]$$
 m1
Wage bill = $55\left[\frac{40}{2}(100 + 568)\right]$ (m1) ft (b)(i)
Wage bill = (£)734 800 A1 cao

9(a)
$$\tan(\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta}$$
$$\tan(\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 - 2\cot \beta \tan \beta}$$
M1
$$\tan(\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 - 2}$$
$$\tan(\alpha + \beta) = -(\tan \alpha + \tan \beta)$$
A1 convincing

9(b)
$$4\tan\theta = 3(1 + \tan^2\theta) - 7$$
$$3\tan^2\theta - 4\tan\theta - 4 = 0$$
$$(3\tan\theta + 2)(\tan\theta - 2) = 0$$
$$\tan\theta = -\frac{2}{3}, 2$$
Note : No working shown m0 A0
$$\theta = 63.4^\circ, 243.4^\circ$$
$$\theta = 146.3^\circ, 326.3^\circ$$

M1	$\sec^2\theta = 1 + \tan^2\theta$
A1	
m1	allow $(3\tan\theta - 2)(\tan\theta + 2)$
A1	cao

B1	ft tan value, -1 each extra value in
	range

-1 each extra value in range

<u>Note</u> : Do not ft for other trig functions.

Q Solution

10a(i) Use of product rule

$$x^5 \times \frac{1}{x} + 5x^4 \ln x$$

10a(ii) Use of quotient rule

$$\frac{(x^3-1)3e^{3x}-e^{3x}(3x^2)}{(x^3-1)^2}$$

Mark Notes

M1
$$x^{5}f(x)+g(x)\ln x$$

A1
$$f(x) = \frac{1}{x}$$

A1
$$g(x)=5x^4$$
 isw

M1
$$\frac{(x^3-1)f(x)-e^{3x}g(x)}{(x^3-1)^2}$$

A1
$$f(x)=3e^{3x}$$

A1

A1
$$g(x)=3x^2$$
 isw

M1 $\frac{1}{2}(\tan x + 7x)^{-1/2}f(x)$

 $\mathbf{f}(x) = (\mathbf{sec}^2 x + 7)$

isw

10a(iii)Use of chain rule

$$\frac{1}{2}(\tan x + 7x)^{-1/2}(\sec^2 x + 7)$$

<u>Note</u> : f(x), $g(x) \neq 0$ or 1.

10(b)
$$3\frac{dy}{dx} + 4y^2 + 8xy\frac{dy}{dx} - 15x^2 = 0$$
 B1 $3\frac{dy}{dx} - 15x^2, 0$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{15x^2 - 4y^2}{3 + 8xy}$$

$$31 \qquad 3\frac{\mathrm{d}y}{\mathrm{d}x} - 15x^2, 0$$

B1
$$4y^2 + 8xy\frac{dy}{dx}$$

B1 correct
$$\frac{dy}{dx}$$
 cao

11(a)
$$y = \frac{\sqrt{x^2 - 1}}{x}$$

 $x^2 y^2 = x^2 - 1$
 $x^2(1 - y^2) = 1$
 $x = \pm \frac{1}{\sqrt{1 - y^2}},$

$$f^{-1}(x) = \frac{1}{\sqrt{1-x^2}}$$
, +ve since $x \ge 1$

100005

A1

Μ

A1 ft above for similar expression

B1

G1for f(x) starting at (1,0) with
horizontal asymptote y=1Or for $f^{-1}(x)$ starting at (0,1) with
vertical asymptote x=1
(does not need to be shown)G1reflection in y = x, provided curve

passes through (1,0) or (0,1)

11(b)
$$ff(x)$$
 cannot be formed because

the range of f(x) is not in the domain of f(x).

E1 oe eg consideration of a single point.

	$3(\frac{1}{2}r^2\theta - \frac{1}{2}r^2\sin\theta) = \pi r^2$	M1	oe
	$\sin\theta = \theta - \frac{2\pi}{3}$	A1	convincing
12(b)($i)f(\theta) = \theta - \sin\theta - \frac{2\pi}{3}$		
	f(2.6) = -0.00989647 < 0	M1	
	f(2.7) = 0.178225 > 0		
	Change of sign, therefore $2.6 < \theta < 2.7$	A1	
12(b)(ii) $f'(\theta) = 1 - \cos\theta$	B1	
	$\theta_{n+1} = \theta_n - \frac{\theta_n - \sin \theta_n - \frac{2\pi}{3}}{1 - \cos \theta_n}$	M1	si
	$ heta_0 = 2.6$		
	$\theta_1 = 2.6053296$	A1	1 st iteration correct si
			ft $f'(\theta) = 1 + \cos \theta$ only (2.6691)
	$\theta_2 = 2.605325675$		
	θ = 2.605 (correct to 3 d.p.)	A1	cao
<u>Note</u> :	No marks for unsupported answer of 2.605		
	$1 + \cos \theta$ in denominator, series is divergen	ıt.	

12(a) Area of sector $OAB = \frac{1}{2}r^2\theta$

Area triangle $OAB = \frac{1}{2}r^2\sin\theta$

Area of segment = $\frac{1}{2}r^2\theta - \frac{1}{2}r^2\sin\theta$

either si

si

B1

B1

13(a)
$$\frac{\mathrm{d}A}{\mathrm{d}t} = kA$$

13(b)
$$\int \frac{dA}{A} = \int k dt$$
 M
 $\ln A = kt + (C)$ A
 $t = 0, A = 0.2$ m
 $C = \ln 0.2$
 $\ln \frac{A}{0 \cdot 2} = kt$
 $t = 1, A = 1.48$ m
 $k = \ln(7.4) = 2.00148$
 $e^k = 7.4$ A
 $(A =) 0.2e^{kt}$ A
 $(A =) 0.2(7.4)^t$ A

M1 separate variablesA1n1 use of initial conditions

Mark Notes

B1

m1	used
A1	either k or e^k
A1	$k = 2, 2.00148, \ln(7.4)$
A1	cao

14(a)
$$\frac{1}{2}e^{2x} - 2\cos 3x + C$$

B1 one correct term
B1 second correct term
-1 if no +*C*.

14(b)
$$(x^2 + \sin x)^7 + C$$
 B1 -1 if no +C(only once).

14(c)
$$I = \int x^{-2} \ln x \, dx = \left[\frac{x^{-1}}{-1} \ln x\right] - \int -x^{-1} \times \frac{1}{x} \, dx$$
 M1 $f(x) \ln x - \int f(x) \frac{1}{x} \, dx$
A1 1^{st} term
A1 2^{nd} term
 $I = -\frac{1}{-1} \ln x + \int x^{-2} \, dx$

$$x = -\frac{1}{x}\ln x - \frac{1}{x} + C$$
 A1 -1 if no +0

A1
$$-1$$
 if no +C (only once)

14(d) $u = 2\cos x + 1;$ $du = -2\sin x \, dx$

$$x = 0, u = 3;$$

$$x = \frac{\pi}{3}, u = 2$$

$$I = \int_{3}^{2} -\frac{1}{2u^{2}} du = \frac{1}{2} \int_{2}^{3} u^{-2} du$$

$$I = \frac{1}{2} \left[-\frac{1}{u} \right]_{2}^{3}$$

$$I = \frac{1}{2} \left[\frac{1}{2} - \frac{1}{3} \right]$$

$$I = \frac{1}{12}$$

$$I = \frac{1}{12}$$

$$A1$$

$$Corrections of the temperature of temp$$

and au^{-2}

t integration of u^{-2}

ct use of correct limits

Note: No marks for unsupported answer of 1/12.

15	Assume that $\sqrt{6}$ is rational.	M1
	Then there are (integers) <i>a</i> and <i>b</i> ,	
	with no common factor (except 1)	
	such that $\sqrt{6} = \frac{a}{b}$	m1
OR		

Assume $\sqrt{6} = \frac{a}{b}$, where <i>a</i> and <i>b</i> ,	
are integers.	(M1)
<i>a</i> and <i>b</i> have no common factor (except 1).	(m1)

THEN

Square both sides, $6 = \frac{a^2}{b^2}$ $6b^2 = a^2$ So $(a^2$ and thus)a is an even number, A1 Dep on M1 (a = 2k,) $6b^2 = a^2 = (2k)^2 = 4k^2$ $3b^2 = 2k^2$ So $(b^2$ and thus b is an even number. A1 Dep on M1 (b = 2h)So, *a* and *b* have a common factor 2. This is a contradiction. Hence $\sqrt{6}$ is irrational. A1 cso

OR

 $6b^2 = a^2$ So $(a^2$ and thus)a has a factor of 6, a = 6k (A1) Dep on M1 $6b^2 = a^2 = (6k)^2 = 36k^2$ $b^2 = 6k^2$ So $(b^2$ and thus)b has a factor of 6, b = 6h (A1) Dep on M1 So, a and b have a common factor 6. This is a contradiction. Hence $\sqrt{6}$ is irrational. (A1) cso

Note: Also accept factor of 3.

1300U30-1 WJEC GCE A Level (New) Mathematics - Unit 3 Pure Mathematics B MS S19/DM